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Abstract. In a rectangular domain, we discuss about an approximation of the first order derivatives for the solution of the mixed
boundary value problem. The boundary values on the sides of the rectangle are supposed to have the second order derivatives
satisfying the Hölder condition. Under these conditions for the approximate values of the first derivatives of the solution of mixed
boundary problem on a square grid, as the solution of the constructed difference scheme a uniform error estimation of order O(h)
(h is the grid size) is obtained. Numerical experiments are illustrated to support the theoretical results.

INTRODUCTION

Laplace equation is an important equation with many applications in engineering fields. The Laplace equation has
numerical solutions that have been studied along with many boundary conditions, the most applicable of which is the
mixed boundary condition problem. Many of these studies have used classical operators (see [1] and [2]). As well as
the solution of the Laplace equation, the derivative of its solution has many applications (see [3]) and many of these
solutions were obtained using classical operators (see [4]).

In this study, the mixed boundary value problem of Laplace equation is considered by using 5-point finite difference
scheme on a rectangle. A second order finite-difference approximation on square grids is used to obtain numerical
solution. The uniform convergence for the approximate solution at the rate of O(h2) and for the first derivative at the

rate of O(h) is proved when the exact solution u belongs to C̃2,λ .

FINITE DIFFERENCE APPROXIMATION

Let Π= {(x,y) : 0< x< a,0< y< b} be rectangle, a/b be rational, γ j, j = 1,2,3,4, be the sides, including (excluding)
the ends, enumerated counterclockwise starting from the side which location on the x−axis (γ0 ≡ γ4,γ1 ≡ γ5). Denote

by s the arc length, measured along γ, and by s j the value of s at the beginning of γ j and by γ =
4∪

j=1
γ j, the boundary

of Π, by v j a parameter taking the values 0 or 1, and v j = 1− v j.
We consider the following boundary value problem

Δu = 0 on Π, (1)

v ju+ v ju
(1)
n = v jϕ j + v jψ j on γ j, j = 1,2,3,4, (2)

where u(1)n is the derivative along the inner normal, ϕ j and ψ j are given functions at the arc length taken along γ,

1 ≤
4

∑
j=1

v j ≤ 4, v1 = 1. (3)

Definition 1 We say that the solution u of the problem (1), (2) belongs to C̃k,λ (Π), if

v jϕ j + v jψ j ∈Ck,λ (γ j), 0 < λ < 1, j = 1,2,3,4 (4)

and at the vertices A j = γ j−1 ∩ γ j the conjugation conditions

v jϕ
2q+δτ−2
j + v jψ2q+δτ

j = (−1)q+δτ+δτ−1(v j−1ϕ2q+δτ−1
j−1 + v j−1ψ2q+δτ

j−1 ) (5)

International Conference on Analysis and Applied Mathematics (ICAAM 2020)
AIP Conf. Proc. 2325, 020029-1–020029-4; https://doi.org/10.1063/5.0040564

Published by AIP Publishing. 978-0-7354-4069-2/$30.00

020029-1



are satisfied, except may be the case when q = k/2 for τ = 3, where τ = v j−1 + 2v j, δw = 1 for w = 0; δw = 0 for
w �= 0, q = 0,1, ...,Q, Q = [(k−δτ−1 −δτ−2)/2]−δτ.

Let h > 0, with a/h ≥ 2, b/h ≥ 2 be integers. We assign to Πh a square net on Π, with step h, obtained by the lines
x,y = 0,h,2h, ...; γh

j be a set of nodes on the interior of γ j, and let

.
γh

j = γ j ∩ γ j+1, γh = ∪(γh
j ∪

.
γh

j), Πh
= Πh ∪ γh.

Let the operators A, K and
.
K be defined as follows:

Au(x,y) =
u(x+h,y)+u(x,y+h)+u(x−h,y)+u(x,y−h)

4
on Πh, (6)

Ku(x,y) =
1

2
u(x+hsin

jπ
2
,y−hcos

jπ
2
)+

1

4

1

∑
k=0

u(x+(−1)khcos
jπ
2
,y+(−1)khsin

jπ
2
) on γh

j , j = 1,2,3,4, (7)

and

.
Ku(x,y) =

1

2

1

∑
k=0

u(x+hsin
( j+ k)π

2
,y−hcos

( j+ k)π
2

) on
.
γh

j , j = 1,2,3,4. (8)

We consider the classical 5-point finite difference approximations of the problem (1):

uh = Auh on Πh, (9)

uh = v jϕ j +
_
v j(Kuh − h

2
ψ j) on γh

j , j = 1,2,3,4, (10)

uh = v jϕ j +
_
v jv j+1ϕ j+1 +

_
v j

_
v j+1(

.
Kuh − h

2
(ψ j +ψ j+1)) on

.
γh

j , j = 1,2,3,4. (11)

The system of finite difference equations (9)-(11) which has nonnegative coefficients, with the condition (3) is
uniquely solvable.

Theorem 1 Let u the solution of problem (1), (2). If u ∈ C̃2,λ (Π) the condition (3) holds, then

max
Πh

|uh −u| ≤ ch2,

where uh is the solution of the system (9)-(11).

The proof of Theorem 1 follows from the Theorem 1 in [1].

APPROXIMATE OF THE FIRST DERIVATIVES

Let u be a solution of problem (1), (2). Let v = ∂u
∂x and let Φ j =

∂u
∂x on γ j, j = 1,2,3,4, and consider the boundary

value problem:

Δv = 0 on Π, v = Φ j on γ j, j = 1,2,3,4. (12)

We define the sets

γh+
(2i−1)

=
{

0 ≤ x ≤ a
2
, y = b(i−1)

}
∩ γh

(2i−1), i = 1,2 (13)
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and

γh−
(2i−1)

=
{a

2
+h ≤ x ≤ a, y = b(i−1)

}
∩ γh

(2i−1), i = 1,2. (14)

We define the following operator Φph, p = 1,2,3,4,

Φ(2i−1)h(uh) = v3
∂u(x,b(i−1))

∂x
+ v3

1

h
[−uh(x,b(i−1))+uh(x+h,b(i−1))] on γh+

(2i−1)
, (15)

Φ(2i−1)h(uh) = v3
∂u(x,b(i−1))

∂x
+ v3

1

h
[uh(x,b(i−1))−uh(x−h,b(i−1))] on γh−

(2i−1)
, (16)

Φ(2i)h(uh) = v(2i)ψ(2i) + v(2i)
(−1)i+1

h
[ϕ(2i)((2− i)a)−uh((2− i)a+(−1)ih,y)] on γh

(2i), (17)

where i = 1,2 and uh is the solution of the finite difference problem (9)-(11).
Let vh be the solution of the following finite difference problem

vh = Avh on Πh, vh = Φ jh on γh
j , j = 1,2,3,4, (18)

where Φ jh , j = 1,2,3,4, are defined by (15)-(17).

Theorem 2 The following estimation is true

max
(x,y)∈Πh

∣∣∣∣vh − ∂u
∂x

∣∣∣∣≤ ch,

where u is the solution of the problem (1), vh is the solution of the finite difference problem (18).

Remark 1 We have investigated approximations of the first derivative ∂u
∂x . The same results are obtained for the

derivative ∂u
∂y , by using the same order forward and backward formulae in the corresponding sides of the rectangular

domain.

NUMERICAL EXAMPLES

Example 1 Let Π = {(x,y) : 0 < x,y < 1} , and let γ be the boundary of Π. We consider the following problem :

Δu = 0 on Π, u = ϕ j(x,y) on γ j, j = 1,2,3, u(1) =
∂u(0,y)

∂x
= ψ4(y) on γ4,

where

ϕ j(x,y) = (x2 + y2)
61
60 cos

(
61

30
arctan

(y
x

))
on γ j, j = 1,2,3,

and

ψ4(y) =
61

30
y

31
30 sin

(
61π
60

)
on γ4.

Table 1 shows that the order of the solution of the problem given in Example 1 is O(h2) when the given Neu-
mann condition on the left side and order of the first derivative O(h) when used the first order backward numerical
differentiation formula on the right side.

Example 2 Let Π = {(x,y) : 0 < x,y < 1} , and let γ be the boundary of Π. We consider the following problem :

Δu = 0 on Π, u = ϕ(x,y) on γ j, j = 1,2,3,

u(1) =
∂u(x,1)

∂y
= ψ3(y) on γ3 and u(1) =

∂u(0,y)
∂x

= ψ4(y) on γ4,
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TABLE 1. The approximate results for the solution and first derivative when ϕ ∈C2, 1
30

h ‖uh −u‖ Em
u ‖vh − v‖ Em

v
1
4 3.224E −04 3.631 2.641E −01 1.994
1
8 8.878E −05 3.879 1.324E −01 1.997
1
16 2.289E −05 3.988 6.631E −02 1.999
1
32 5.739E −06 4.032 3.318E −02 1.999
1
64 1.423E −06 4.040 1.659E −02 2.000
1

128 3.523E −07 8.299E −03

where

ϕ j(x,y) = (x2 + y2)
61
60 cos

(
61

30
arctan

(y
x

))
on γ j, j = 1,2,3,

and

ψ3(y) =−61

30

60
√

x2 +1

[
xsin(

61

30
arctan(

1

x
)− cos(

61

30
arctan(

1

x
))

]
on γ3,

ψ4(y) =
61

30
y

31
30 sin

(
61π
60

)
on γ4.

TABLE 2. The approximate results for the solution and first derivative when ϕ ∈C2, 1
30

h ‖uh −u‖ Em
u ‖vh − v‖ Em

v
1
4 7.404E −04 3.999 2.663E −01 2.002
1
8 1.851E −04 4.007 1.330E −01 2.001
1
16 4.621E −05 4.006 6.647E −02 2.001
1
32 1.153E −05 4.004 3.332E −02 2.000
1
64 2.881E −06 4.002 1.661E −02 2.000
1

128 7.199E −07 8.301E −03

Table 2 shows that the order of the solution of the problem given in Example 2 is O(h2) when the given Neumann
condition on the left side and at the top sides and order of the first derivative O(h) when used the first order forward
and backward numerical differentiation formula on the right and up sides.

The results which illustrated in Table 1 and Table 2 are the numerical justification of Theorem 1 and Theorem 2.
In Table 1 and Table 2 we have used the following notations:

‖Uh −U‖
Πh = max

Πh
|Uh −U | and En

U =
‖U−U2−n‖Πh∥∥∥U−U

2−(n+1)

∥∥∥
Πh

, where U be the trace of the exact solution of the continuous

problem Πh
, and Uh be its approximate values.

CONCLUSION

The proposed method can be used to obtain the derivative of the solution of the 3D Laplace equation with mixed
boundary conditions.
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